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ABSTRACT

This report presents some observations on cyclie arithmetic
codes and their distance-properties. The main result is the demon-
stration that modular arithmetic weight is invariant to cyclic shifts
of codewords. As a consequence of this result, it is shown that the
minimum distance of a cyeclic arithmetic code can be found by a search
of less than one-sixth of the codewords. This result also permits a
simple proof of a result due to Goto and Fukumura for computation ;f
arithmetic weighs in terms of the residue classes modulo B, the

number of codewords.



I. INTRODUCTION

It will be assumed that the reader is familiar with the concepts
of arithmetic weight and distance, denoted AW and AD respectively, as
described by Massey (6). We shall also require the following three
definitions, the first due to Reitweisner (7), and the other two due
to Garcia (3).

Definitibn 1 The nonadjacent form (NAF) of an integer I is the

unique expression for I of the form I =igo aiel where a; e'{—l,O,l}
and a; 8,4 = 0, 1> 0.

The arithmetic weight of I is the number of non-zero terms in
the NAF for I. Note that AW(I) = AW(—I) since these two NAF differ

only in the sign of their respective terms.

Definition 2 The modular arithmetic weight of an integer I,

relative to the modulus m, denoted MAW(I) is defined as:

MAW(I) = min [AW(I), AW(m-I)].
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Example 1: Let m = 31

MAW (21) = min [AW(21), AW(31-21)]

min [AW(21), AW(10)]

min [3,2]
= 2
It should be noted that MAW does not necessarily satisfy the
triangle inequality, as seen in the next example. |
Example 2: Let m = 35
MAW (3+19) = MAW (22) = 3 but MAW (3) = MAW (19) = 1

Definition 3 The modular arithmetic distance (MAD) between

integers Il and 12 is:

MAD (I,,I,) = MAW (lIl—IEI)



MAD is not in general a true metric since the triangle inequality
fails for certain moduio's.
Example 3: Let m = 35

MAD (0,22) = MAW (22) = 3

But MAD (0,3) = MAD (3,22) = 1

Garcia (3) has however shown that for modulo's of the form 2% or
2"_1 the triangle inequality does hold, and hence MAD is a true metric
for these valnes of the modulus.

Definition 4 The arithmetic code with B codewords generated

by the integer A is the set of integers {0,A,2A, . . . (B-1)A}.

It is customary to think of the codeword A . N as resulting from
the encoding of the information digit N, and arithmetic codes are
often called AN codes for this reason.

An AN code is said to be cyclic if the n-place cycliec shift of
the radix two form of every codeword is the radix two form of a code-
word, where n is defined by AB = o1, Some of the more convenient
properties of cyclic arithmetic codes are: 1) The codewords are
closed under addition modulo m=2n—l and, in fact, form an ideal in
the ring of integers modulo 21, 2) If I is a codeword then ot 1.1
is also a codeword. Also 3) the minimum MAW and the minimum AW of
the nonzero codewords coincide.

In the rest of this report unless otherwise mentioned the modulus

m will be o%_1 for the appropriate n.



IT. OBSERVATIOQNS

Let [a,b] denote the set of integers I such that a < I < b and
(a,b] denote the set of integers I such that a < I < b. The set
W.= (O,2n-l] where AB = 2"-1 is of considerable interest in the theory

of cyclic AN codes. The lower third (L3) of W is defined to be the

set (0, g?], the middle third (M3) as the set (g?, 2n+1—1] and the
3

3 3
upper third (U3) as the set (2°73.1, 2%-1].
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It [an a . ao] is the concatenation of the coefficients

n-1 "
in the NAF of an integer IeW then:

I e L3 if and only if a =a ;=0
I e M3 if and only if a, = 0, a 1= 1
I.e U3 if and only if a = 1, a 1= 0

Five lemmas will be given that simplify the proofs of the subse-
quent theoreus.
Lemma 1 For any integers I and J,

AW(T) = AW(T) < AW(I+J) < AW(I) + AW(J)
Proof: By the triangle inequality

AW(I+3) < AW(T) + AW(J)
again by the triangle inequality AW(I) = AW(-J + (I+J) < AW(-J) + AW(I+J)
or AW(I) - AW(J) < AW(I+J)
Lemma 2 For any integer I and any modulus m, MAW (I) = MAW (m-I).
Proof: Follows directly from the definition of modular arithmetic
weight.

The next lemma shows that for an integer I in the lower third of W,
the modular arithmetic and arithmetic weighs coincide.
Lemma 3 For I € L3 then

MAW (I) = aw (I)



Proof: AW (2°-I) = AW(I) + 1 since the NAF of I may be written

n n=2
-, % a,
i=o 1

?22 8.2" so that 2
iZo “i

thus  AW(2"-I-1) > AW(2"-1) - Aw(1)

2% is already the NAF for 2°-I.

>AW(I) +1 -1
> AW(I).
and hence MAW(I) = min [AW(I), AW(2°-1-1)] = AW(I)

The next two lemmas relate thé arithmetic weight of I and the
arithmetic weight of I-1 according to the endings of I in NAF. If
P aiQi is the NAF of I, we shall often represent this NAF as the
concatenation of its coefficients in descending order letting P
represent +1, and N represent -1. For instance, I=3 has the NAF
22 _ 2° which we shall denote by PON. The notation OP(ON)i denotes
the sequence in which OP is followed by i repetitions of the subse-
guence ON. It should be noted that the cases in the two lemmas are
Just shifts of each other.

Lemma 4 For an odd integer I,
AW(T) -1 < AW (T-1) < AwW(I).
Proof: The only possible endings for I in NAF are op(om)t or
00(ow)? where 1 >0, >1.
Subtracting one results in NAF's with endings
00(20)} or o(mo) (p0)d~t.

In the first case AW(I-1) = AW (I) - 1.
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In the second case AW(I-1) = AW(I).
Lemma 5 For an even integer I,
AW(I) < AW (I-1) < AW(I) + 1.
Proof: The possible endings in NAF for I are
po(n0)} or 00(N0)* where 1 > o

Subtracting one results in the NAF's

op (oP)! or on (oP)*.



In the first case - AW (I-1) = AW (I)

In the second case ' AW (I-1) = AW(I) + 1.

fl

Theorem 1 For I € W then
MAW (I) = AW (I)
if (i) I e L3
(ii) T e M3 and even
otherwise MAW (I) = AW (2°-1-I)
Proof I ¢ L3 by Lemma 3 previously
I € U3 by Lemmas 3 and U previously
I € M3 and I even
AW (2°%-1) = aw (1)
AW (2°-1-1) < AW (1) + 1
. MAW (I) = AW (1)
I € M3 and I odd
AW (2%-1) = aw (1)
AW (2%-1-1) aw (2°-1)
| (1)
MAW (I) = AW (2°-1-T)

Definition 5 Let I € W and T (I) be the integer whose radix two

form is the n-place cyclic shift of the radix two form of I.
Similarly, let 7t (I) be the integer corresponding to the i-th cyclic
shift. Note that T(I) = 2I if I e (0,2"71-1] and

n-l g 0B,

T(I) = 2I - 2741 ir I e (2
. The following theorem shows that modualr arithmetic weight is

invariant to cyeclie shifts.



Theorem 2 For I € W MAW(I) = MAW [T(I)].

n—l— l]

Proof I ¢ (0,2
Iel3 T(I) €13 or T(I) € M3 and T(I) even
MAW(I) = AW(2I). = AW(T) = MAW(I)

I ¢ M3 and I even MAW(I) = AW(I)
T(I) e U3 and MAW(2I) = Aw(2"-1-21)
but AW(2"-2I) = AW(I) -1 since 2"-2T ends in 00
Aw(2"221-1) = AW(I) - 1 + 1 = MAW(I)
I e M3 and I odd MAW(I) = AW(2"-1-T)
T(I) € U3
MAW(2I) = Aw(2"-1-21)
AW(2R-1) = aw(I)
AW(2R-21) = AW(I) -1
and by lemmas 3 and b
AW(T) < aw(2™-1-1) < AW(I) - 1
A1) < aw(2"-21-1) < AW(I) - 1
aﬁd the equalities go together

.. MAW(2I) = MAW(I)

Ie (2211, 28]

MAW(I) = MAW(2"-1-1)
MAW(T(T)) = MAW(2I-2"+1) = Maw(2(2%-1-1))

but since from the previous parts of the theorems

MAW(T) = MaW(23) J e [0,2°7)

then MAW(I) = MAW[T(I)].



Corollery 2 The minimum distance of a cyclic AN code is the minimum
of the arithmetic weights of its non-zero odd codewords in the lower
third.
Proof: It must be shown that the minimum of the arithmetic weighs of
the non-zero codewords is attained by an odd codeword in L3. If
I is an even codeword then I is one or more cyclic shiftébof an odd
codeword. The odd codewords in U3 and M3 are obtained by T(I') where
I' is an even codeword.

The following development relates the arithmetic weight of integers
in L3 to the cyclic group of the powers of 2 modulo B and the cosets
of this cyclic group.

Definition 6 The NAF of I € W is said to be cyclic nonadjacent if

an—l ao. =0.
Example I TLet I = 11

NAF of I = (PONON) is not cyclic nonadjacent if n=5 but is
cyclic nonadjacent if n>5.

Note that any number in L3 or in M3 and even, automatically is

cyclic nonadjacent.

Definition 7 For I e L3, let Z(I) be the integer whose NAF if the

n~-place cyclic shift of the NAF for I. Similarly let Zl(I) be the
.th . .. i .
i”" eyeclic shift. Note that Z (I) may be negative.
Example 5 Let I =11 andn =6
I = OPONON = 11

zH(1)

= PONONO = 22
22(;) = ONONOP = -19
z3(1) = NONOPO = -38
Zh(I) = ONOPON = -13
25(1) = NOPONO = -26
26(1) =1 =11



Lemma 6 21(I) = T°(I) if zi > 0, otherwise Z (I) = TH(I)~2"+1.
Proof: It suffices to show that 7H(I) and 22(I) are either the

same integer or differ by exactly 2nfi. But since cyclic shifting
always doubles the integers with perhaps the addition or subtraction

of 2"-1, it follows that Ti(I) = Zi(I) mod 2°-1 all i and also
o < Ti(I) < o gng 2P < ZikI) < oB 80 the conclusion follows.

The following theorem gives us - simple counting procedure to
find the AW of an integer in L3.
Theorem 3 For I € L3

AN(T) = #{1 @ TH(D)eM3, i = 0,1...N-1}
Proof: AW(I) is just the number of non-zero terms in the NAF of I.
But & 1.1 is the leading term in the NAF of Zi(I) and hence is zero
if and only if lZi(I)IsLS by lemma 6 this is equivalent to
Ti(I)eL3 or (2%-1) - Ti(I)eLB. But 2n-l—Ti(I)eL3 is equivalent ot
Tl(I)sUB. Hence an—l
Let M3B the "middle third of B" be the set of integers I such

B 2B
Eg—'é'] .

a consequence the following corollary due originally to Goto and

_;Fo if and only if T (I)eM3.

that ATeM3. Tt is readily checked that M3B = ( We now have as
Fuhumura (4) and used by them to simplify the Barrows-Mandelbaum codes.
Corollary 3 The minimum distance of a cyclic AN code is given by
min #{i : 2'L mod BeM3B, i = 0,1...(n-1)}
L < B/3
L odd
Proof: AW(AI) = #{i . TP (AI)eM3 i = 0,1..(n-1)} but #{i : T (AT)eM3)
is the same as #{i . 21 (AI) mod ABeM3}. And that is the same as
#i 2 211 moa Bem3B)
This corollary shows that the minimum arithmetic weight of the
non-zero codewords of a cyclic arithmetic code can be obtained without

ever actually constructing the codewords but simply by considering

integers modulo B.
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